ΤΑ ΒΙΟΚΑΥΣΙΜΑ ΚΙΝΗΣΗΣ ΔΙΕΘΝΩΣ ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΗΣ ΧΩΡΑΣ

Από το Σπύρο Κυρίτση
Μέλος της Γεωργικής Ακαδημίας

ΝΟΕΜΒΡΙΟΣ 2011
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>50.70/49.50</td>
<td>50.09/48.00</td>
<td>40.73/41.06</td>
<td>34.97/36.34</td>
<td>24.55/19.80</td>
</tr>
<tr>
<td>2</td>
<td>Brazil</td>
<td>24.80/23.30</td>
<td>23.63/22.20</td>
<td>24.84/20.60</td>
<td>24.50/17.70</td>
<td>19.80/</td>
</tr>
<tr>
<td>3</td>
<td>European Un.</td>
<td>5.14/6.44</td>
<td>4.29/5.33</td>
<td>3.58/4.39</td>
<td>2.73/3.52</td>
<td>2.16/</td>
</tr>
<tr>
<td>4</td>
<td>China</td>
<td>2.08**</td>
<td>2.05</td>
<td>1.90</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thailand</td>
<td>0.45/0.45</td>
<td>0.43/0.45</td>
<td>0.40/0.45</td>
<td>0.34/0.34</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>Canada</td>
<td>1.75/2.10</td>
<td>1.35/1.65</td>
<td>1.25/1.45</td>
<td>0.85/1.30</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>India</td>
<td>0.50/0.50</td>
<td>0.15/0.15</td>
<td>0.09/0.13</td>
<td>0.32/0.32</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Columbia</td>
<td>0.45/0.41</td>
<td>0.29/0.29</td>
<td>0.32/0.34</td>
<td>0.25/0.25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Australia</td>
<td>0.45/0.45</td>
<td>0.27/0.28</td>
<td>0.20/0.20</td>
<td>0.13/0.13</td>
<td>0.10/</td>
</tr>
<tr>
<td>World Total Production***</td>
<td>-</td>
<td>-</td>
<td>73.99</td>
<td>65.61</td>
<td>49.60</td>
<td></td>
</tr>
</tbody>
</table>

* The production/consumption of ethanol for 2011 is assumed/
** Sven Tetzlaft[49]
*** Ethanol capacity could expand to 163 Mm3 in 2015 and in biofuels in general to 200 Mm3[50]
Πίνακας 2. Ετήσια Παραγωγή/Κατανάλωση Biodiesel σε μερικές χώρες και Διεθνώς (1,000 t)[48]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>France production</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,763</td>
<td>954</td>
</tr>
<tr>
<td>Germany production / consumption</td>
<td>2,400/-</td>
<td>2,350****/2,581</td>
<td>2,500/2,517</td>
<td>2,600/2,695</td>
<td>2,890/3,245</td>
</tr>
<tr>
<td>Italy production</td>
<td>700</td>
<td>732</td>
<td>795</td>
<td>668</td>
<td>470</td>
</tr>
<tr>
<td>EU production/ consumption</td>
<td>8,791*/10,869</td>
<td>8,898/11,408</td>
<td>8,704/10,138</td>
<td>7,326/8,947</td>
<td>6,169/7,092</td>
</tr>
<tr>
<td>U.S.A. production/ consumption</td>
<td>2,000/2,640</td>
<td>1,083/770</td>
<td>1,874/1,043</td>
<td>2,694/1,040</td>
<td>1,701/1,181</td>
</tr>
<tr>
<td>Argentina production consumption /</td>
<td>2,300**/700</td>
<td>1,850/497</td>
<td>1,179/1</td>
<td>712/0</td>
<td>250/0</td>
</tr>
<tr>
<td>Brazil production/ consumption</td>
<td>2,300/2,275</td>
<td>2,067/2,167</td>
<td>1,415/1,377</td>
<td>1,027/990</td>
<td>356/228</td>
</tr>
<tr>
<td>S. America production</td>
<td>4,841</td>
<td>4,193</td>
<td>2,815</td>
<td>1,912</td>
<td>650</td>
</tr>
<tr>
<td>China production</td>
<td>200</td>
<td>200</td>
<td>168</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Indonesia production/consumption</td>
<td>650***/350</td>
<td>650/300</td>
<td>370/172</td>
<td>500/17</td>
<td>245/14</td>
</tr>
<tr>
<td>S. Korea production</td>
<td>230</td>
<td>240</td>
<td>120</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Thailand production/consumption</td>
<td>620/610</td>
<td>550/554</td>
<td>493/535</td>
<td>394/407</td>
<td>60/30</td>
</tr>
<tr>
<td>Malaysia production</td>
<td>110</td>
<td>110</td>
<td>240</td>
<td>190</td>
<td>100</td>
</tr>
<tr>
<td>Asia production</td>
<td>1,996</td>
<td>1,934</td>
<td>1,597</td>
<td>1,506</td>
<td>625</td>
</tr>
<tr>
<td>World Production</td>
<td>18,096</td>
<td>16,566</td>
<td>15,435</td>
<td>13,769</td>
<td>9,329</td>
</tr>
</tbody>
</table>
Πίνακας 3. Σύγκριση μεταξύ ΗΠΑ και Ε.Ε. σε Παραγωγή- Κατανάλωση Βιοαιθανόλης

<table>
<thead>
<tr>
<th>Bioethanol</th>
<th>U.S.A.</th>
<th>E.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Παραγωγή 2010</td>
<td>50.09 Mm³</td>
<td>4.29Mm³</td>
</tr>
<tr>
<td>Παραγωγή 2011</td>
<td>50.70Mm³</td>
<td>5.14Mm³</td>
</tr>
<tr>
<td>Στοχ. Κατανάλωση 2015</td>
<td>70.00 Mm³</td>
<td>?</td>
</tr>
<tr>
<td>2020 – 2022</td>
<td>136.80 Mm³</td>
<td>10% των καυσίμων</td>
</tr>
<tr>
<td>Πρώτη Ύλη</td>
<td>Τώρα Αραβόσιτος και 80,00 Mm³ Κυτταριν. αιθανόλη έως το 2022</td>
<td>Δημητριακά, Σακχαρότευτλα, Άγνωστο % Κυτταρ. Αιθανόλη ή ΒtL το 2020</td>
</tr>
<tr>
<td>Εξοικονόμηση CO₂</td>
<td>20-30% τώρα</td>
<td>30% από την αιθανόλη</td>
</tr>
<tr>
<td></td>
<td>Αναμεν. Εξοικονόμηση CO2 86% - 90% από την κυτταρ. Αιθανόλη*και ΒtL</td>
<td></td>
</tr>
</tbody>
</table>

Note: The today ethanol production in U.S.A and in E. U. does not fulfill the sustainability criteria of E. U.
*According to BIOLIFE project predictions using corn Stover for Ethanol production in USA.
Πίνακας 4. Σύγκριση μεταξύ ΗΠΑ και Ε.Ε σε παραγωγή Biodiesel (X 1000Τ).

<table>
<thead>
<tr>
<th>Παραγωγή 2010</th>
<th>Παραγωγή 2011</th>
<th>Ε.Ε.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,083</td>
<td>8,898</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>8,791</td>
</tr>
</tbody>
</table>

1η. Ύλη
Corn, Soya, Cotton (as 2nd product) και Ελαιοκράμβη
Ελαιοκράμβη και Ηλίανθο σε γη προοριζόμενη για τροφή

Εξοικον. CO₂
Biodiesel από σόγια έχει μείωση 57% GHG
Πίνακας 5. Παγκόσμια παραγωγή Βιοαιθανόλης, 1η ύλη και κόστος.

<table>
<thead>
<tr>
<th>Σειρά</th>
<th>1η ύλη βιοαιθανόλης</th>
<th>Κόστος Παραγωγής (€/m3)</th>
<th>Παραγωγή βιοαιθανόλης Million m3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
</tr>
<tr>
<td>Βραζιλία</td>
<td>Ζαχαροκάλαμο</td>
<td>170</td>
<td>19.00</td>
</tr>
<tr>
<td>H.Π.Α.</td>
<td>Αραβόσιτος</td>
<td>377 (2008)*</td>
<td>24.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>253 (2009)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245 (2010)*</td>
</tr>
<tr>
<td>Ε.Ε.</td>
<td>Δημητριακά και Ζαχαρότευτλα</td>
<td>450</td>
<td>2.16</td>
</tr>
<tr>
<td>Κίνα</td>
<td>grain maize, wheat</td>
<td>310</td>
<td>1.84</td>
</tr>
<tr>
<td>Ινδία</td>
<td>Γλυκό Σόργο κλπ.</td>
<td>278-300</td>
<td>0.20</td>
</tr>
<tr>
<td>Μεσόγειος</td>
<td>Γλυκό Σόργο (Eubia εκτιμήσεις)</td>
<td>200-250</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: EUBIA (modified)

* Με 0.67% η 1η ύλη και 0.82 % νερό. World Ethanol and Biofuels Report, 2010
Πίνακας 6. Παραγωγή Biodiesel παγκόσμια σε Κ. τόνους

<table>
<thead>
<tr>
<th>ΧΩΡΑ</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 U.S.A.</td>
<td>2,500</td>
<td>1,870</td>
</tr>
<tr>
<td>2 Argentina</td>
<td>2,300</td>
<td>1,300</td>
</tr>
<tr>
<td>3 Germany</td>
<td>2,200</td>
<td>2,400</td>
</tr>
<tr>
<td>4 France</td>
<td>2,100</td>
<td>2,000</td>
</tr>
<tr>
<td>Πίνακας 7. Σύγκριση βιοκαυσίμων * U.S.A. και Ε.Ε.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σημερινή παραγωγή</td>
<td>53.00 Mm³</td>
<td>14.00 Mm³</td>
</tr>
<tr>
<td>Στοχευόμενη Παραγωγή</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>>70.00 M.m³</td>
<td>?</td>
</tr>
<tr>
<td>2022</td>
<td>>136.80 M.m³</td>
<td>16.00-20.00 M.m³*</td>
</tr>
<tr>
<td>Πρώτη Υλή</td>
<td>Αραβόσιτος για βιοαιθανόλη</td>
<td>Δημητριακά, Τεύτλα για βιοαιθανόλη</td>
</tr>
<tr>
<td></td>
<td>Ελαιοκράμβη, Σογιέλαιο, Βαμβακέλαιο και Αραβοσιτέλαιο για biodiesel</td>
<td>Ελαιοκράμβη, Ηλίανθος, Τηγανέλαια Ζωικά λύπη, για biodiesel</td>
</tr>
<tr>
<td>CO2 Κέρδη</td>
<td>10-30% για την αιθανόλη 55% για το biodiesel</td>
<td>35 - 45% για το biodiesel</td>
</tr>
</tbody>
</table>

* Biodiesel και Bioethanol
Fig. 1. World – Ethanol Export Prices ($ per m³)
Fig. 2. USA – Ethanol Exports 2010
by destination, Jan/Apr (incl. ETBE)
Προβλήματα που αντιμετωπίζουν τα βιοκαύσιμα

- Υψηλό κόστος της 1ης Ύλης (≈65% του τελικού κόστους)
- Υψηλό κόστος μετατροπής των κυτταρινών σε αιθανόλη (βλ. εικ. 3)
- Υψηλό κόστος για παραγωγή diesel με BTL τεχνολογία (βλ. εικ. 3)
- Περιορισμένα περιβαλλοντικά οφέλη σήμερα...
- Κοινωνικής ευαισθησίας προβλήματα για βιοκαύσιμα παραγόμενα σε αναπτυσσόμενες χώρες.
- Προβλήματα τιμών τροφίμων και ζωοτροφών (το έτος 2050 εκτιμάτε* ότι τα βιοκαύσιμα θα καλύπτουν το 3%-4% των 6 b.Ha της σημερινής γεωργικής γης).

* Energy Technology Status and outlook 2008. IEA
Εικόνα 3. : Δεύτερης γενιάς βιοκαύσιμα, κόστος παραγωγής εκτιμήσεις για το 2050.

Source: Dr Peter Taylor “Scenarios and Strategies to 2050” Energy Technology Perspectives 2008, I.E.A. /OECD
1ο Συμπέρασμα

Ε.Ε. έχει σοβαρή υστέρηση έναντι των Η.Π.Α. στην παραγωγή και κατανάλωση βιοκαυσίμων.

Το Biodiesel της Ε.Ε. θα είναι εκτός των «κριτηρίων βιωσιμότητας», διότι:

✓ απαιτείται CO\textsubscript{2} : 45%
✓ παράγονται από τρόφιμα, ως επί το πλείστον
✓ Τα εισαγόμενα λάδια προέρχονται από χώρες που δεν σέβονται τα «κριτήρια βιωσιμότητας» (κοινωνικά, τρόφιμα, υψηλή αποθήκευση Σ)

Το κόστος της βιοαιθανόλης που παράγεται στην Ε.Ε. είναι πολύ υψηλό σε σχέση με τις διεθνείς τιμές.
ΒΙΩΣΙΜΑ ΒΙΟΚΑΥΣΙΜΑ ΑΠΟ ΤΗ ΝΟΤΙΑ ΕΥΡΩΠΗ

Κοινά προβλήματα της Νότιας Ευρώπης:

- Σοβαρά ποσοστά Ανεργίας*
- Κορεσμένες αγορές και ανταγωνισμός από τρίτες χώρες για βασικά τους γεωργικά προϊόντα (καπνός, βαμβάκι…)
- Ξηρό περιβάλλον και ανταγωνισμός για νερό άρδευσης με τον τουρισμό, πολεοδομία.

* Στη Ν. Αφρική υπολογίζουν 700,000 νέες θέσεις εργασίας από την εισαγωγή της βιοαιθανόλης, (Ε-15) το έτος 2020.
Πίνακας 8. Τα αναμενόμενα πλεονεκτήματα από την παραγωγή βιοαιθανόλης από κυτταρίνες και Γ.Σόργο.

<table>
<thead>
<tr>
<th>Καλλιέργεια</th>
<th>Ετήσιες αποδόσεις (Liters/Ha)</th>
<th>Εξοικονόμηση CO2 (% vs. petrol)[7]</th>
<th>Παρατηρήσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscanthus</td>
<td>7300</td>
<td>37-73</td>
<td>Μικρών απαιτήσεων σε χημικά και νερό. Αντοχή στο κρύο</td>
</tr>
<tr>
<td>Switch grass</td>
<td>3100-7600</td>
<td>37-73</td>
<td>Μικρών απαιτήσεων. Αντοχή στο κρύο..</td>
</tr>
<tr>
<td>Ευκάλυπτος</td>
<td>6000-12000(3), [5]</td>
<td>100</td>
<td>Δεν αντέχει το ψύχος. Για καλά αποτελέσματα θέλει νερό</td>
</tr>
<tr>
<td>Ζαχαροκάλαμο</td>
<td>6800-8000(6), [7]</td>
<td>87-96</td>
<td>Μόνο για τροπικές και υποτροπικές περιοχές. Απαιτεί νερό όλο το χρόνο.</td>
</tr>
<tr>
<td>Γλυκό Σόργο</td>
<td>2500-7000[4]) [5]</td>
<td>Παρόμοια του ζαχαροκάλαμου</td>
<td>Καλύτερα αποτελέσματα σε τροπικές και υποτροπικές περιοχές. Θέλει το ½ του νερού του αραβοσίτου και το 1/3 του ζαχαροκάλαμου.</td>
</tr>
</tbody>
</table>

Total fresh weight

- Australia seeds: NSS. 104
 - 170 t/ha
 - (28000 ha)

- Romania seeds: F135/1143
 - 176 t/ha
 - (24000 ha)

- Germany seeds: (KWS)
 - 100 t/ha
 - (21,000 ha)

High S.S. grains productivity: ~ 7.5 t/ha.
Εικόνα 2. Παραγωγή Βιομάζας από το Γλυκό Σόργο κατά τη διεργασία παραγωγής Αιθανόλης. (Prasad et al, 2007)[27]
Τι αναμένει η Ν.Ευρώπη από το Γλυκό Σόργο.

- Παραγωγή Βιοαιθανόλης > 6t/ha
- Συν-παραγωγή Σπόρου για ζωτροφή ή Αιθανόλη.
- Συν-παραγωγή Ζωτροφής από papillionacae (αμειψισπορά στον ίδιο χρόνο) και από τα υποπροϊόντα της ζύμωσης.
- Παραγωγή Ν για την αυτό-τροφοδοσία του Γ. Σόργου.
- Νερό άρδευσης στο ½ του αραβοσίτου.
- Κόστος Βιοαιθανόλης 200-250€/m3.
- Συν-παραγωγή Ηλεκτρισμού από τα υπολείμματα. (feed in tariff στην Ελλάδα 150 €/Mwh) ή παραγωγή αιθανόλης
Εικόνα 3. Παραγωγή Ενέργειας Συγκριτικά από 1 Ηa καλλιεργούμενο με βιομάζα.
Πηγή: www.fnr.de

The biofuels biomethane and Btl (biomass-to-liquid) are not in use or still in experimental stage at the present time, but their production from biomass is very effective. The resulting range from one hectare arable land can thereby be reasonably high. The performance of rapeseed oil, biodiesel and bioethanol is much lower, but the balance improves enormously through the utilisation of their by-products.

Biomethane and bioethanol are used in petrol engines and vegetable oil, biodiesel and BtL are suitable for diesel engines.

* Biomethane from by-products (colza cake, draff, straw)
Fuel consumption: petrol engine 7.4 l/100 km, diesel engine 6.1 l/100 km

Τα περιβαλλοντικά οφέλη προέρχονται επίσης από τη χρήση των αποβλήτων στις αρδεύσεις (~90% διατήρηση των λιπαντικών στοιχείων) και οφέλη επίσης από τη χρήση αποβλήτων για Ενέργεια.

Έτσι, σύμφωνα με το JRC το συμπιεσμένο Βιομεθάνιο είναι περιβαλλοντικά πιο φιλικό από περισσότερα από 70 διαφορετικά καύσιμα και τρόπους ενεργειακής παραγωγής.
Συμπέρασμα

Η Ε.Ε. εισάγει και θα εισάγει αιθανόλη, διότι το κόστος ιδιοπαραγωγής είναι υψηλό και δεν τηρεί τα κριτήρια αειφορείας.

Το κόστος της 1ης ύλης, που καλύπτει το 65% του τελικού κόστους, είναι μικρότερο στην Ν. Ευρώπη (μεγαλύτερη παραγωγικότητα) από αυτό της Κεντρικής και Β. Ευρώπης.

Η καθυστέρηση της Ν. Ευρώπης οφείλεται στην ανεπαρκή πολιτική της Ε.Ε. και στην εσφαλμένη πολιτική των χωρών της Ν. Ευρώπης ή στην άγνοια των δυνατοτήτων τους ??
Η ΑΓΟΡΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ Ε.Ε.27

<table>
<thead>
<tr>
<th>Βιο-Προιόντα</th>
<th>Σημερινή Αγορά</th>
<th>Τάσεις Ανάπτυξης (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμική και Ηλεκτρική Ενέργεια</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Στερεά Βιομάζα</td>
<td>Ε.Ε.27: 74.5 ΜΤΙΠ</td>
<td>195-230 ΜΤΙΠ από Στερεά Βιομάζα και Απόβλητα (COM2006/848)</td>
</tr>
<tr>
<td>Απόβλητα</td>
<td>EU27: 6.6 ΜΤΙΠ</td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>EU27: 8.1 ΜΤΙΠ</td>
<td>48 ΜΤΙΠ-στην EU-27 το 2020 (source: German Biomass Research Centre, European Biogas Association (EBA) and AEBIOM)</td>
</tr>
<tr>
<td>Βιοκαύσιμα για Μεταφορές</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Γενεά</td>
<td>EU: 10.2 ΜΤΙΠ</td>
<td>Μέση Ετήσια Ανάπτυξη 28.2% biodiesel; 12.8% βιοαιθανόλη</td>
</tr>
<tr>
<td></td>
<td>(8 ΜΤΙΠ biodiesel)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.2 ΜΤΙΠ βιοαιθανόλη)</td>
<td></td>
</tr>
<tr>
<td>2nd Γενεά</td>
<td>--</td>
<td>?</td>
</tr>
</tbody>
</table>
Πλαίσιο Υποστήριξης της Ενεργειακής Αγοράς στην Ε.Ε.27

➢ Ε.Ε. Οδηγία για της Αν.Πηγές (2009/28/EC), με τους ακόλουθους στόχους για το 2020:
 ✓ Μείωση των εκπομπών CO2 (GHG) κατ’ελάχιστο 20% από τα επίπεδα του 1990;
 ✓ Βελτίωση της ενεργειακής απόδοσης κατά 20%;
 ✓ Αύξηση του ποσοστού των Α.Π.Ε. στο 20%;
 ✓ Αύξηση του ποσοστού των Βιο-καυσίμων στις μεταφορές στο 10%.

➢ Το σχέδιο Δράσης της Βιομάζας (COM(2005) 628) με έμφαση στη χρήση της Βιομάζας για Η.Ρ. (Θέρμανση και Ηλεκτρισμό) και τις Μεταφορές, λαμβάνοντας μέτρα υποστήριξης των Ενεργειακών Καλλιεργειών με οικονομική ενθάρρυνση της Αγοράς.

Η Ε.Ε. για να πετύχει τους στόχους αυτούς θα πρέπει κατά την ΑΕΒΙΟΜ να στοχεύει στην καλλιέργεια με Βιομάζα 25 Mha, όπως:
 ✓ 15 Mha για Bio-καύσιμα Μεταφορών
 ✓ 5 Mha για Bio-αέριο
 ✓ 5 Mha για Στερεά Βιομάζα
Κατανάλωση Βιο-Ενέργειας στην Ε.Ε.27

Οτι Επετεύχθη (Estimations from EurObserver)

Οτι Προέβλεπε Το Σχέδιο Δράσης

EurObserv'ER 2009

* Ότι Επετεύχθη (Estimations from EurObserver)

** Ότι Προέβλεπε Το Σχέδιο Δράσης
Ενεργειακές καλλιέργειες

Πολυετείς
- Καλάμι (Arundo donax)
- Αγριαγκινάρα (Cynara cardunculus)
- Μίσχανθος (Miscanthus sinensis x giganteus)
- Switchgrass (Panicum virgatum)
- Ευκάλυπτος (Eucalyptus spp.)
- Ψευδάκακια (Robinia pseudacacia)

Ετήσιες
- Γλυκό και ινώδες σόργο (Sorghum bicolor)
- Κενάφ (Hibiscus cannabinus)
- Ελαιοκράμβη (B. carinata, B. napus)
Αγριαγκινάρα (Cynara cardunculus L.)

- Πολυετές είδος αγκαθιού, που καλλιεργείται παραδοσιακά σε κάποιες περιοχές της μεσογειακής ζώνης.
- Πολύ καλά προσαρμοσμένη στο ξηρό κλίμα των μεσογειακών χωρών.
- Ως χειμερινό φυτό έχει τη δυνατότητα να εκμεταλλεύεται τις βροχοπτώσεις και να δίνει το μέγιστο των αποδόσεων, ακόμη και χωρίς άρδευση.
- Λόγω του εύρωστου ριζικού συστήματος που διαθέτει προστατεύει από τη διάβρωση τα επικλινή κι άγονα εδάφη.

☑ Σπορά: Άνοιξη - Φθινόπωρο
☑ Συγκομιδή: Καλοκαίρι (Ιούλιος, Αύγουστος)
Switchgrass (*Panicum virgatum* L.)

- Πολυετές ριζωματώδες φυτό που ανήκει στα αγροστώδη (Gramineae).
- Αυτόχθονο στη Νότιο Αμερική.
- Παραδοσιακά καλλιεργούμενο στις ΗΠΑ σε βοσκότοπους και λειμώνες τα τελευταία 50 χρόνια.
- Η καλλιέργεια του παρουσιάζει αρκετά πλεονεκτήματα αφού μπορούν να παραχθούν σημαντικές ποσότητες βιομάζας ακόμη και σε συνθήκες μειωμένων εισροών (λίπανση, ζιζανιοκτονία).
- Όι αρδευτικές ανάγκες του Switchgrass είναι χαμηλές αφού χαρακτηρίζεται από αποδοτική χρήση του νερού.

✓ Σπορά: Άνοιξη
✓ Συγκομιδή: από Νοέμβριο ως Φεβρουάριο
Μίσχανθος (Miscanthus x giganteus)

- Πολυετές ριζωματώδες φυτό που ανήκει στα αγροστώδη (Gramineae).
- Προέρχεται από την Ανατολική Ασία, όπου απαντάται σε περιοχές με τροπικό, υποτροπικό έως εύκρατο κλίμα.
- Ο γονότυπος που χρησιμοποιείται εισάχθηκε από την Ιαπωνία το 1930.
- Η καλλιέργειά του παρουσιάζει αρκετά πλεονεκτήματα αφού μπορούν να παραχθούν σημαντικές ποσότητες βιομάζας ακόμη και σε συνθήκες μειωμένων εισορών (λίπανση, ζιζανιοκτονία).
- Μπαίνει σε υψηλή παραγωγικότητα από τον τρίτο χρόνο καλλιέργειας.

✓ Φύτευση ριζωμάτων: τέλη Φεβρουαρίου
✓ Συγκομιδή: από Δεκέμβριο ως Φεβρουάριο
Καλάμι (Arundo donax L.)

- Πολυετές ριζωματώδες φυτό που ανήκει στα αγροστώδη (Gramineae).
- Αυτόχθονο στις χώρες της Μεσογείου.
- Πιστεύεται ότι προέρχεται από την Ασία. Απαντάται στη Νότιο Ευρώπη, Νότιο Αφρική, Μέση Ανατολή, Αυστραλία, Βόρεια και Νότια Αμερική, σε μεγάλο εύρος κλιματικών και εδαφικών συνθηκών.
- Η καλλιέργεια του παρουσιάζει αρκετά πλεονεκτήματα αφού μπορούν να παραχθούν σημαντικές ποσότητες βιομάζας ακόμη και σε συνθήκες μειωμένων εισροών (άρδευση, λίπανση, ζιζανιοκτονία).

- Φύτευση ριζωμάτων: Νοέμβριος - Φεβρουάριος
- Συγκομιδή: Ιανουάριος - Φεβρουάριος
Ευκάλυπτος (Eucalyptus camaldulensis Dehnh & E. globulus Labill.)

- E. globulus Labill, καλλιεργούμενο είδος σε πολλές μεσογειακές χώρες για παραγωγή χαρτοπολτού. Είναι απαραίτητος σε αρδευση και ευαίσθητο στο ασβέστιο και για αυτό το λόγο περιορίζεται το εύρος της καλλιέργειας του (σε περιοχές με υψηλά επίπεδα βροχόπτωσης και με όξινα εδάφη).

- E. camaldulensis Dehnh., που χρησιμοποιείται επίσης για παραγωγή χαρτοπολτού σε εμπορική κλίμακα στο Μαρόκο και σε μικρότερη έκταση στην Ισπανία και Πορτογαλία. Είναι το πιο διαδεδομένο είδος ευκαλύπτου στις περιοχές της νότιας Ευρώπης, λόγω ανθεκτικότητας στην ξηρασία και στις υψηλές συγκεντρώσεις ασβεστίου, που χαρακτηρίζουν τα περισσότερα εδάφη της νότιας Ευρώπης.
Ψευδακακία (Robinia pseudacacia)

- Φυτό ψυχανθές, πολυετές, δενδρώδες, που χαρακτηρίζεται από ταχύτατη ανάπτυξη του υπέργειου μέρους, σημαντική παραγωγή βιομάζας κι εξαιρετική αναβλάστηση μετά την κοπή.

- Το ενδιαφέρον για την ψευδακακία αυξάνει τόσο στην Ευρώπη, όσο και στην Ασία.

- Η ψευδακακία, εξ αιτίας του ταχύτατου ρυθμού ανάπτυξης, της υψηλής πυκνότητας του ξύλου και της χαμηλής περιεκτικότητας σε υγρασία, σε σχέση με άλλα είδη, θεωρείται πολύ παραγωγικό φυτό σε βιομάζα.
Παραγωγικότητα ενεργειακών καλλιεργειών στην Ελλάδα

<table>
<thead>
<tr>
<th>Φυτικά είδη</th>
<th>Αποδόσεις (τόνοι ξ.ο/στρ/χρόνο)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Καλάμι</td>
<td>2-3</td>
</tr>
<tr>
<td>Αγριαγκινάρα</td>
<td>1-2</td>
</tr>
<tr>
<td>Μίσχανθος</td>
<td>1-3</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>1,4-2,5</td>
</tr>
<tr>
<td>Ευκάλυπτος</td>
<td><3,5</td>
</tr>
<tr>
<td>Ψευδακακία</td>
<td>0,6-1,7</td>
</tr>
<tr>
<td>Γλυκό/Ινώδες σόργο</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Κενάφ</td>
<td>1,5</td>
</tr>
<tr>
<td>Ελαιοκράμβη</td>
<td>0,3-0,8</td>
</tr>
</tbody>
</table>
Σας Ευχαριστώ